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Abstract

Lactation mastitis is a common, but poorly understood, inflammatory breast disease that is a significant health burden.
A better understanding of the aetiology of mastitis is urgently required, and will assist in the development of improved
prevention and treatment strategies in both human and animal species. Studies in mice have the potential to greatly
assist in identifying new drug candidates for clinical trials, and in developing a better understanding of the disease.
Mouse models of mastitis involve administration of a mastitis-inducing agent to the mammary gland usually during
lactation to examine the host immune response, and progression through to resolution of the disease. There are
important variations in the protocols of these mouse models that critically affect the conclusions that can be drawn
from the research. Some protocols involve weaning of offspring at the time of mastitis induction, and there are
variations in the mastitis-inducing agent and its carrier. Induction of mammary gland involution through weaning of
offspring limits the capacity to study the disease in the context of a lactating mammary gland. Administration of live
bacteria in an aqueous carrier can cause sepsis, restricting the physiological relevance of the model. Mouse model
research should employ appropriately designed controls and closely monitor the health of the mice. In this
commentary, we discuss the advantages and study design limitations of each mouse model, and highlight the
potential for further development of physiologically relevant mouse models of mastitis.
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Background
Mastitis is a common, but poorly understood, inflamma-
tory breast disease in lactating women that causes local-
ised pain, reduced milk synthesis and the rapid onset of
systemic symptoms including fever, flu-like aches, chills
and fatigue [1,2]. The challenges posed by this disease
lead many women to use supplementary formula, or
cease breastfeeding altogether [3-5]. Mastitis in HIV-
infected women increases the risk of vertical transmis-
sion of HIV to the breastfeeding infant [6,7].
The cause of mastitis is believed to be infection of the

breast with bacterial pathogens [8,9]. However, recent
research suggests this paradigm might be an oversimpli-
fication [10,11]. Milk stasis and maternal stress are
strong predisposing factors, and alternative microorgan-
isms such as commensal bacteria [12] and fungi [13]
have also been implicated, all of which may trigger or
* Correspondence: wendy.ingman@adelaide.edu.au
1Discipline of Surgery, School of Medicine, The Queen Elizabeth Hospital,
University of Adelaide, Woodville, Australia
2Robinson Research Institute, University of Adelaide, Adelaide, Australia
Full list of author information is available at the end of the article

© 2015 Ingman et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
amplify breast inflammation leading to mastitis [14,15].
Therefore, the interactions between inflammatory stim-
uli including pathogenic bacteria [8] and other compo-
nents of the microbiome, as well as the host immune
response [15,16] are all likely to contribute to shaping
the severity of mastitis, duration of symptoms and reso-
lution of the disease. Similarly, it is increasingly recog-
nised that susceptibility and severity of mastitis in dairy
cattle is dependent on complex interactions between mi-
croorganisms and the host immune response [17]. A
better understanding of the aetiology of mastitis is ur-
gently required, and will assist in the development of im-
proved prevention and treatment strategies.
Mouse models of mastitis involve administration of a

mastitis-inducing agent to the mammary gland, usually
whilst the mouse is lactating, and examination of the
host immune response, and progression and resolution
of the disease [18,19]. Although the small physical size
of mice can pose technical difficulties such as tissue ma-
nipulation and sampling, mouse models of disease offer
the significant advantage of being time and cost effective
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over larger animal models. The identical genetic profile of
inbred mouse strains reduces variability between animals
leading to the ability to generate statistically significant
results using a low cohort size. Importantly, the excellent
availability of genetically modified mice, antibodies to
mouse-specific proteins and other experimental approaches
such as adoptive cell transfer enables the identification of
new cellular and molecular mechanisms, which can spur
translational research leading to clinical trials to treat and
prevent mastitis in both human and animal species.
There are a number of important variations in the

mouse models employed to study mastitis. Some protocols
involve weaning of offspring resulting in mammary gland
involution, some administer live pathogens and others
administer bacterial products that stimulate inflammation
in the absence of active infection. The carrier for the
mastitis-inducing agent also varies. In this commentary,
we discuss the advantages and study design limitations of
each mouse model, and highlight the importance of ap-
propriately designed experimental approaches employing
physiologically relevant mouse models of mastitis.

Permanent removal of pups at mastitis induction
Removal of pups from the lactating female at the time of
mastitis induction is necessary if the mastitis-inducing
agent is prepared in an aqueous solution, as suckling
pups are likely to remove it [20], resulting in reduced
and variable disease induction. The permanent removal
of offspring from a lactating mother is referred to in the
literature as “forced weaning”, and is an experimental
approach used to study the biological process of involu-
tion [21,22]. Forced weaning results in rapid accumula-
tion of milk in the mammary gland, causing death of
alveolar epithelial cells and tissue remodelling, ultimately
returning the mammary gland architecture to a non-
lactating state [23]. Forced weaning elevates inflamma-
tory mediators in the mammary gland including nuclear
factor kappa B [24] and downstream signalling factors
such as nitric oxide [25], and there is an influx of macro-
phages [26,27], all of which are critical components of
the cell death and tissue remodelling process.
Forced weaning of offspring at the time of administra-

tion of the mastitis-inducing agent complicates the ana-
lysis of mastitis induction, as both involve an influx of
immune cells to the mammary gland (Figure 1). Forced
weaning also limits the utility of the mouse model, once
lactation has ceased there is no longer the capacity to
study the progression or resolution of the disease in the
context of a functional lactating mammary gland, or the
impact of the disease on milk supply. Reduced milk sup-
ply is a critical feature of mastitis in women [3,4], and
most women continue to breastfeed during episodes of
mastitis in line with World Health Organization and
Academy of Breastfeeding Medicine recommendations
[2,28]. On the other hand, forced weaning results in ac-
cumulation of milk within the ducts which is not se-
creted. This may be a desirable component of the model
if the study aims to investigate the contribution of rapid
weaning or the oversupply of milk, which are predispos-
ing factors [2], on susceptibility to mastitis.
An alternative approach to forced weaning is to return

pups to the lactating dam following mastitis induction.
However the optimal time point for this, that does not
lead to removal of the mastitis-inducing agent by the
suckling pups, has not been established. Some of the
complications associated with forced weaning can be
overcome through the use of appropriate controls that
distinguish inflammation associated with involution
from signals associated with mastitis [29]. Despite this,
the physiological relevance of such studies becomes lim-
ited to the acute phase of inflammation over the first 24
to 48 hours.

Administration of different mastitis-inducing agents
A variety of mastitis-inducing agents are utilised in
mouse models of mastitis, including different strains
of live bacteria and fungi, such as Escherichia coli,
Staphylococcus aureus and Candida krusei, and bacterial
products such as endotoxin (an outer membrane lipo-
protein in Gram-negative bacteria that elicits a strong
inflammatory response; also known as lipopolysaccharide)
[16,30-32]. Mastitis is inflammation of the breast that
may be infective or non-infective [33-35]. Therefore,
the particular agent utilised addresses different ques-
tions in disease aetiology – the host immune response
to an active bacterial infection (live pathogen) com-
pared to the host immune response to an inflammatory
stimulus (bacterial product).
Administration of live bacteria to the mammary gland

is employed to investigate the immune response to
specific infectious bacterial pathogens [30,36] and the
efficacy of experimental vaccines [37,38]. These stud-
ies often describe the acute response over 24 to
48 hours following mastitis induction and forced weaning
[18,19,30,36], although longer term studies in mice with
suckling pups have also been described [32,39]. Careful
monitoring of mice over the disease time course is essen-
tial, as the health of mice administered live bacteria can
become severely compromised. For example, an 8°C drop
in body temperature occurs within 24 hours [36], and
death within 48 hours [40] following administration of
some strains of S. aureus to the lactating mouse mam-
mary gland, indicative of septic shock. Sepsis is a severe
systemic inflammatory response to infection followed by
an immunosuppressed state, and is associated with mul-
tiple organ failure and loss of haemodynamic control
[41]. These systemic events are likely to compromise
mammary gland immune system function, altering the



Figure 1 Alterations in cellular components of the mouse mammary gland during mastitis induction and forced weaning. Figure shows
tissue histology (A-C, haematoxylin and eosin stained sections) and abundance of neutrophils (D-F) and macrophages (G-I) 24 hours after
mastitis induction or forced weaning. The macrophages and neutrophils are stained brown, and counter-stained with haematoxylin and indicated
by arrows. If the mastitis-inducing agent is administered at the same time as forced weaning, it can be difficult to distinguish the specific inflammatory
response to mastitis from the inflammatory response to forced weaning, as both cause alterations in immune cells. Magnification x20, scale bars
represent 100 μm. Adapted from Glynn et al. [47] with permission.
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expression of pro-inflammatory and anti-inflammatory
cytokines, the survival of immune cells and the capacity
for antigen presentation. Although mastitis can lead to
sepsis in women [42], this is a rare occurrence and does
not replicate mastitis disease progression in the majority
of clinical cases.
Compared to administration of live bacteria, adminis-

tration of bacterial products does not have the same
capacity to compromise health of mice, however this ap-
proach does not enable the study of how the immune
system responds to active bacterial infection. Such stud-
ies are best utilised to investigate the host inflammatory
response, rather than the invading pathogen. The host
inflammatory response, including cells, cytokines and
intracellular inflammatory mediators, have been impli-
cated in the severity of mastitis in a number of human
[43,44], bovine [45,46] and mouse studies [16,47,48], and
the therapeutic benefit of dampening this inflammation
is currently being explored in mice [49-52]. Therefore,
studies that employ administration of bacterial products
rather than live bacteria address how the host immune
response affects mastitis disease, and can be utilised to
explore potential new therapeutics for further develop-
ment in pre-clinical and clinical studies.
In addition to variations in the mastitis-inducing agent

between different studies, the carrier for the agent also
varies. The majority of mouse model studies administer
the mastitis-inducing agent in an aqueous carrier such
as phosphate-buffered saline [18-20,29-32]. Use of an
aqueous carrier poses two physiologically relevant prob-
lems: (1) the offspring must be removed from the lactat-
ing dam to prevent the offspring from suckling and thus
removing the mastitis-inducing agent from the mam-
mary gland as discussed above; and (2) the mastitis-
inducing agent disperses in the mammary gland causing
a widespread mammary gland immune response, that in
some instances leads to systemic infection and sepsis.
Recently, Matrigel was used as an alternative carrier
for deposition of a mastitis-inducing agent into the
mammary gland of lactating mice [47]. Matrigel is a
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gelatinous mixture of proteins that is liquid at 4°C and
becomes solid at body temperature. Bacterial endotoxin
was combined with Matrigel on ice, and inserted into
the teat canal of lactating mice [47], where it formed a
solid plug. This feature of Matrigel has a number of
physiologically relevant benefits over traditional aqueous
carriers, as the mastitis-inducing agent remains localised
to a specific region of the mammary gland, thus enabling
the continued suckling of pups and analysis of the full
course of disease through to resolution, in the context of
a lactating mammary gland.
Further development of mouse models utilising Matrigel

as a carrier may provide a number of new avenues for ex-
citing research. The cellular and molecular mechanisms
that lead to reduced milk supply associated with mastitis
can be explored, as pups can continue to suckle throughout
the study. Administration of a live pathogen in Matrigel
may be less likely to develop into a systemic infection com-
pared to the same pathogen in an aqueous carrier. In
addition, many women cease breastfeeding due to mastitis
[3-5], and the impact of milk accumulation in the context
of acute mastitis could be investigated. However, there are
a number of questions regarding the model that are yet to
be addressed, including the utility of the model to study
mastitis caused by specific strains of live microorganisms.
Furthermore, administration of Matrigel in the absence of
endotoxin caused an increase in macrophage abundance
after 7 days [47]. This is likely to be part of the host re-
sponse to remove the plug, however it is unknown
whether Matrigel clearance affects the host immune re-
sponse to the stimulus.

Conclusion
Utilisation of mouse models of mastitis have the potential
to greatly assist in the development of new drug treat-
ments for further testing in clinical trials, and to improve
our understanding of the relationships between the micro-
biome, the host immune response and lactation. However,
caution should be applied when incorporating knowledge
gained in mouse studies to our overall understanding of
mastitis. The use of different types of mastitis-inducing
agents and carriers affects the conclusions that can be
drawn from the research. The physiological limitations of
approaches such as forced weaning and systemic infection
must also be considered. Appropriately designed research
should employ good controls to delineate the immune re-
sponse to forced weaning from the immune response to
mastitis, and closely monitor the health of the mice. Fur-
ther development of a mouse model that enables contin-
ued suckling of pups and stability of mastitis-inducing
agents such as live pathogens and other inflammatory
stimuli within the mammary gland will assist in the gener-
ation of physiologically relevant new knowledge on the de-
velopment, progression and resolution of mastitis.
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